
Salish Sea Climate Change Indicators

Nathan Vadeboncoeur, PhD President & Founder Smart Shores

Climate in Focus: Coastlines and Estuaries

- What changes can we expect?
- How might we be impacted?
- How can we measure this change?
- How can we adapt?

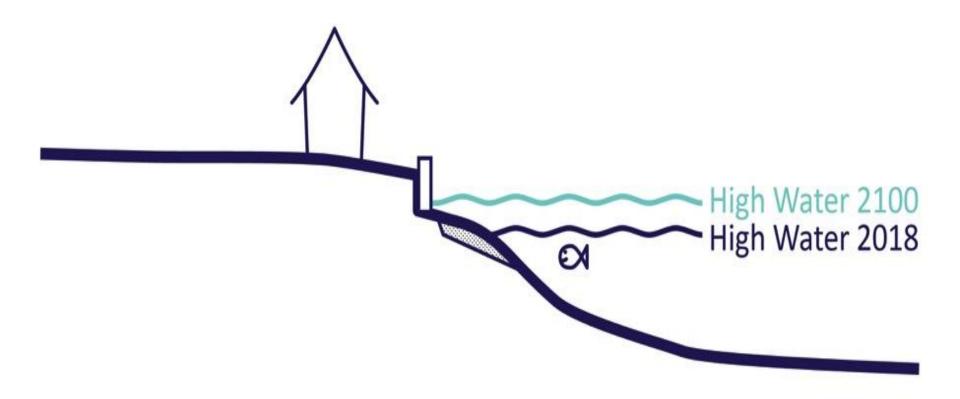
Relative Sea Level Rise Projections for the Salish Sea

Sea Level Rise

- Sea level rise varies by region
- Wave impacts present the greatest risk
- Sediment transport is a key feature

Rising Water Temperature

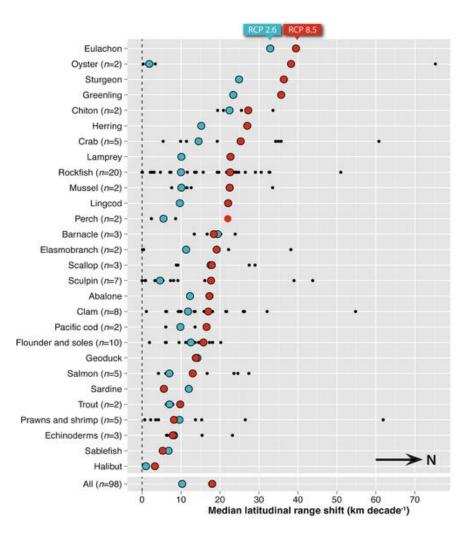
- Northward distribution of species
- Increased river temperature


Physical Coastal Processes

- Sediment Transport
- Shoreline Armouring
- Habitat Impacts

Fisheries

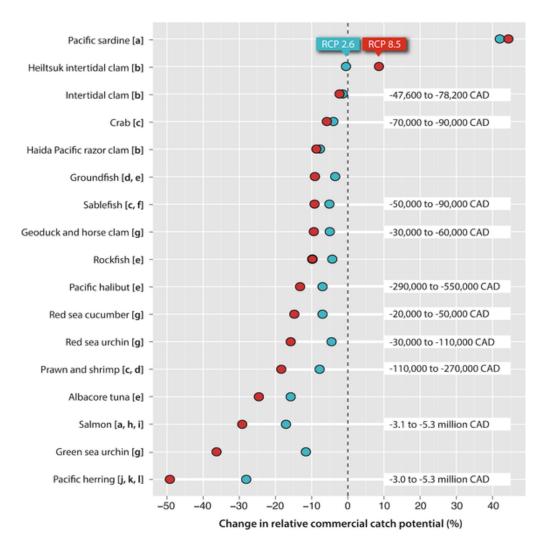
- Forage fish and juvenile salmon habitat
- Water temperature
- Riparian Zones
- Predation


Food Sovereignty

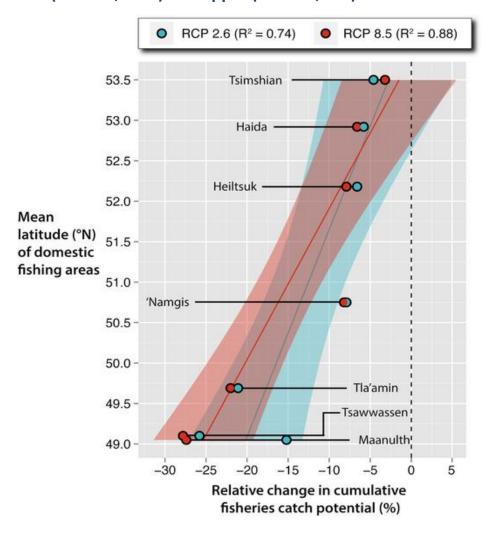
- Climate change will impact:
 - Distribution of species
 - Species habitat / harvesting sites
- Measurable impact on wild foods and associated activity

			ersisland by 2050	% Need Under- Served	Estimated Change	Direction of Change
Fc	Sockeye • Cl	imate change me	eansogoing from 7 to	6 sockeye	person, pe	rwear
	Pink	~6900 fish	1740	75%	10.0%10–19%	Negative
		r Mainland by 20		92%	10.0%10–19%	Negative
	Halibut • C	imate change me	eans going from 7 to	5 sockeye	per₁person, pe	repositive
•	Herring	~7500 kg	n/a		28.1%-49.5%	Negative
	Rockfish	~1900 fish	578	70%	Estimate unknown	Neutral
	Crab	~29,900 whole crabs	112	<1%	No change	Neutral
	Pink shrimps	190 bags	N/A		Stable or upward, estimate unknown	Neutral-positive
	Clams	~15,000 bags or 300,000 lb	28.5 bags or 570 lb OR 62 bags or 570 kg	Less than 1% in either case	Estimate unknown	Negative

For salmonids, the northern range is lower at 3.2%–8.2%; but in the 'Namgis case, a large portion of catch comes from the Fraser River run that travels over the north end of Vancouver Island and through Johnstone Strait and whose decline is estimated at 17.1%–29.2%. Thus a very rough proxy is this average of the high and low estimates. Assumption is 55 clams per kilogram.


Fig 1. Projected median latitudinal range shifts (km decade-1) by taxonomic group or species.

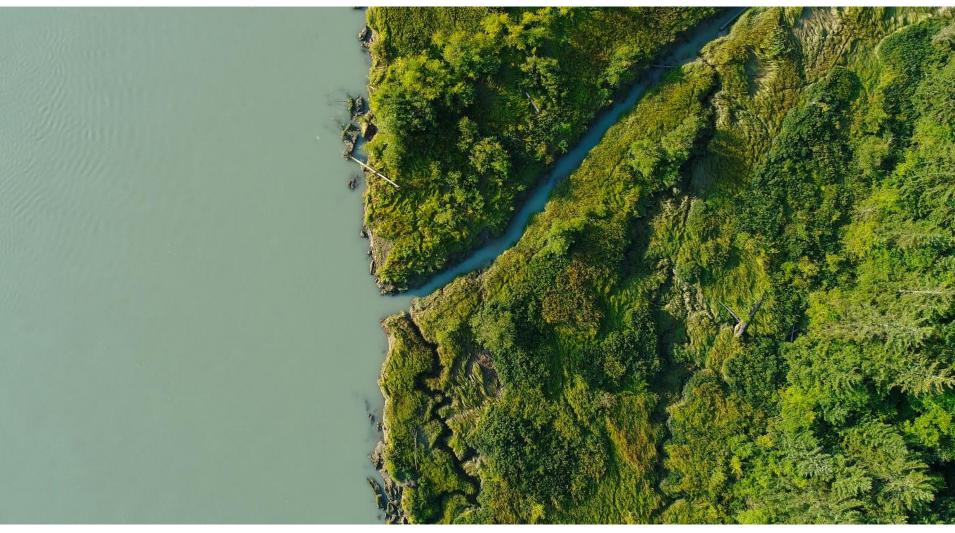
Weatherdon LV, Ota Y, Jones MC, Close DA, Cheung WWL (2016) Projected Scenarios for Coastal First Nations' Fisheries Catch Potential under Climate Change: Management Challenges and Opportunities. PLOS ONE 11(1): e0145285. https://doi.org/10.1371/journal.pone.0145285 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145285


Fig 2. Projected change in relative catch potential by commercial fishery with known First Nation participation.

Weatherdon LV, Ota Y, Jones MC, Close DA, Cheung WWL (2016) Projected Scenarios for Coastal First Nations' Fisheries Catch Potential under Climate Change: Management Challenges and Opportunities. PLOS ONE 11(1): e0145285. https://doi.org/10.1371/journal.pone.0145285 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145285

Fig 3. Relationship between latitude and cumulative change in catch potential (%) by 2050 from the baseline (0%) under the lower (RCP 2.6; blue) and upper (RCP 8.5; red) scenarios of climate change.

Weatherdon LV, Ota Y, Jones MC, Close DA, Cheung WWL (2016) Projected Scenarios for Coastal First Nations' Fisheries Catch Potential under Climate Change: Management Challenges and Opportunities. PLOS ONE 11(1): e0145285. https://doi.org/10.1371/journal.pone.0145285 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145285



Food Sovereignty

- The projections described here are based on TEMPERATURE change
 - They do not take into account habitat loss
 - They do not take into account phenological mismatch
 - They do not take into account pollution

One community can do little to affect the global climate, but can do much to affect its impact.

Key Messages

- First Nations and municipalities play a key role in determining climate impacts
- · Climate impacts are the result of synergistic effects and have cascading consequenc
- Climate change will have measurable impacts on First Nations food sovereignty